- Статья
- Видео
Первый закон Кирхгофа
Определение первого закона звучит так: «Алгебраическая сума токов, протекающих через узел, равна нулю». Можно сказать немного в другой форме: «Сколько токов втекло в узел, столько же и вытекло, что говорит о постоянстве тока».
Узлом цепи называют точку соединения трех и больше ветвей. Токи в таком случае распределяются пропорционально сопротивлениям каждой ветви.
I1=I2+I3
Такая форма записи справедлива для цепей постоянного тока. Если использовать первый закон Кирхгофа для цепи переменного тока, то используются мгновенные значения напряжений, обозначаются буквой İ и записывается в комплексной форме, а метод расчета остаётся прежним:
Комплексная форма учитывает и активную и реактивную составляющие.
Второй закон Кирхгофа
Если первый описывает распределение токов в ветвях, то второй закон Кирхгофа звучит так: «Сумма падений напряжений в контуре равна сумме всех ЭДС». Простыми словами формулировка звучит так: «ЭДС, приложенное к участку цепи, распределится по элементам данной цепи пропорционально сопротивлениям, т.е. по закону Ома».
Тогда как для переменного тока это звучит так: «Сумма амплитуд комплексных ЭДС равняется сумме комплексных падений напряжений на элементах».
Z – это полное сопротивление или комплексное сопротивление, в него входит и резистивная часть и реактивная (индуктивность и ёмкость), которая зависит от частоты переменного тока (в постоянном токе есть только активное сопротивление). Ниже представлены формулы комплексного сопротивления конденсатора и индуктивности:
Вот картинка, иллюстрирующая вышесказанное:
Тогда:
Методы расчетов по первому и второму законам Кирхгофа
Давайте приступим к применению на практике теоретического материала. Чтобы правильно расставить знаки в уравнениях, нужно выбрать направление обхода контура. Посмотрите на схему:
Предлагаем выбрать направление по часовой стрелке и обозначить его на рисунке:
Штрих-пунктирной линией обозначено, как идти по контуру при составлении уравнений.
Следующий шаг – составить уравнения по законам Кирхгофа. Используем сначала второй. Знаки расставляем так: перед электродвижущей силой ставится минус, если она направлена против движения часовой стрелки (выбранное нами в предыдущем шаге направление), тогда для ЭДС направленного по часовой стрелке – ставим минус. Составляем для каждого контура с учетом знаков.
Для первого смотрим направление ЭДС, оно совпадает со штрих-пунтирной линией, ставим E1 плюс E2:
Для второго:
Для третьего:
Знаки у IR (напряжения) зависят от направлением контурных токов. Здесь правило знаков такое же, как и в предыдущем случае.
IR пишется с положительным знаком, если ток протекает в сторону направления обхода контура. А со знаком «–», если ток течет против направления обхода контура.
Направление обхода контура — это условная величина. Нужна она только для расстановки знаков в уравнениях, выбирается произвольно и на правильность расчётов не влияет. В отдельных случаях неудачно выбранное направление обхода может усложнить расчёт, но это не критично.
Рассмотрим еще одну цепь:
Здесь целых четыре источника ЭДС, но порядок расчета тот же, сначала выбираем направление для составления уравнений.
Теперь нужно составить уравнения согласно первому закону Кирхгофа. Для первого узла (слева на схеме цифра 1):
I3 втекает, а I1, I4 вытекает, отсюда и знаки. Для второго:
Для третьего:
Вопрос: «Узла четыре, а уравнения всего три, почему?». Дело в том, что число уравнений первого правила Кирхгофа равно:
Nуравнений=nузлов-1
Т.е. уравнений всего на 1 меньше, чем узлов, т.к. этого достаточно, чтобы описать токи во всех ветвях, советую еще раз подняться к схеме и проверить, все ли токи записаны в уравнениях.
Теперь перейдем к построению уравнений по второму правилу. Для первого контура:
Для второго контура:
Для третьего контура:
Если подставить значения реальных напряжений и сопротивлений, тогда выяснится, что первый и второй законы справедливы и выполняются. Это простые примеры, на практике приходится решать гораздо более объёмные задачи.
Вывод. Главное при расчётах с помощью первого и второго законов Кирхгофа – соблюдения правила составления уравнений, т.е. учитывать направления протекания токов и обхода контура для правильной расстановки знаков для каждого элемента цепи.
Законы Кирхгофа для магнитной цепи
В электротехнике также важны и расчёты магнитных цепей, оба закона нашли своё применение и здесь. Суть остаётся той же, но вид и величины изменяются, давайте рассмотрим этот вопрос подробнее. Сначала нужно разобраться с понятиями.
Магнитодвижущая сила (МДС) определяется произведением количества витков катушки, на ток через неё:
F=w*I
Магнитное напряжение – это произведение напряженности магнитного поля на ток, через участок, измеряется в Амперах:
Um=H*I
Или магнитный поток через магнитное сопротивление:
Um=Ф*Rm
L – средняя длина участка, μr и μ0 – относительная и абсолютная магнитная проницаемость.
Проводя аналогии запишем первый закон Кирхгофа для магнитной цепи:
То есть сумма всех магнитных потоков через узел равна нулю. Вы заметили, что звучит почти так же, как и для электрической цепи?
Тогда второй закон Кирхгофа звучит, как «Сумма МДС в магнитном контуре равна сумме UM (магнитных напряжений).
Магнитный поток равен:
Для переменного магнитного поля:
Он зависит только от напряжения на обмотке, но не от параметров магнитной цепи.
В качестве примера рассмотрим такой контур:
Тогда для ABCD получится такая формула:
Для контуров с воздушным зазором выполняются следующие соотношения:
Сопротивление магнитопровода:
А сопротивление воздушного зазора (справа на сердечнике):
Где S — это площадь сердечника.
Чтобы полностью усвоить материал и наглядно просмотреть некоторые нюансы использования правил, рекомендуем ознакомиться с лекциями, которые предоставлены на видео:
Открытия Густава Кирхгофа внесли весомый вклад в развитие науки, в особенности электротехники. С их помощью довольно просто рассчитать любой электрический или магнитный контур, токи в нём и напряжения. Надеемся, теперь вам стали более понятны правила Кирхгофа для электрической и магнитной цепи.
Похожие материалы:
Опубликовано 26.02.2018 Обновлено 26.02.2018 Пользователем Александр (администратор)
Когда составляем ур-я по 1 закону Кирхгоффа, то есть хорошее пояснение по первому ур-ю. Почему нет пояснений по второму и третьему, когда там все намного неочевиднее? I2 там явно втекает, но почему-то знак у него положительный
в третьем уравнении так вообще все три I втекают. Почему они положительные?
Обратите внимание, что в начале статьи уравнение рассмотрено в виде I1=I2+I3, если перенести всё в левую часть уравнения получится I1-I2-I3=0. Тоже самое и там сделано.
Для второго узла:
I1=I5+I2
перенеся всё в одну сторону выйдет:
I1-I5-I2=0
Сопоставив с направлением обхода контура станет ясно, что лучше изменить знаки, то есть домножить на минус 1.
Выйдет
-I1+I5+I2=0
что равносильно
I2+I5-I1=0