Автор:
Руководитель и главный редактор сайта, автор статей.
Опыт работы 5 лет.
  • Статья
  • Видео
Для расчетов задач по электротехнике в физике есть ряд правил, часто используют первый и второй закон Кирхгофа, а также закон Ома. Немецкий ученый Густав Кирхгоф имел достижения не только в физике, но и в химии, теоретической механике, термодинамике. В электротехнике используется закономерность, которую он установил для электрической цепи, из двух соотношений. Законы Кирхгофа (также их называют правилами) описывают распределение токов в узлах и падений напряжений на элементах контура. Далее мы попытаемся объяснить простым языком, как применять соотношения Кирхгофа для решения задач.

Первый закон Кирхгофа

Определение первого закона звучит так: «Алгебраическая сума токов, протекающих через узел, равна нулю». Можно сказать немного в другой форме: «Сколько токов втекло в узел, столько же и вытекло, что говорит о постоянстве тока».

Первый закон Кирхгофа

Узлом цепи называют точку соединения трех и больше ветвей. Токи в таком случае распределяются пропорционально сопротивлениям каждой ветви.

I1=I2+I3

Такая форма записи справедлива для цепей постоянного тока. Если использовать первый закон Кирхгофа для цепи переменного тока, то используются мгновенные значения напряжений, обозначаются буквой İ и записывается в комплексной форме, а метод расчета остаётся прежним:

Расчет для цепи переменного тока

Комплексная форма учитывает и активную и реактивную составляющие.

Второй закон Кирхгофа

Если первый описывает распределение токов в ветвях, то второй закон Кирхгофа звучит так: «Сумма падений напряжений в контуре равна сумме всех ЭДС». Простыми словами формулировка звучит так: «ЭДС, приложенное к участку цепи, распределится по элементам данной цепи пропорционально сопротивлениям, т.е. по закону Ома».

Уравнение для второго закона

Тогда как для переменного тока это звучит так: «Сумма амплитуд комплексных ЭДС равняется сумме комплексных падений напряжений на элементах».

Равенство

Z – это полное сопротивление или комплексное сопротивление, в него входит и резистивная часть и реактивная (индуктивность и ёмкость), которая зависит от частоты переменного тока (в постоянном токе есть только активное сопротивление). Ниже представлены формулы комплексного сопротивления конденсатора и индуктивности:

Комплексное сопротивление

Вот картинка, иллюстрирующая вышесказанное:

Пример расчета

Тогда:

Вывод со второго закона

Методы расчетов по первому и второму законам Кирхгофа

Давайте приступим к применению на практике теоретического материала. Чтобы правильно расставить знаки в уравнениях, нужно выбрать направление обхода контура. Посмотрите на схему:

Направление обхода контура

Предлагаем выбрать направление по часовой стрелке и обозначить его на рисунке:

Указание направлений

Штрих-пунктирной линией обозначено, как идти по контуру при составлении уравнений.

Следующий шаг – составить уравнения по законам Кирхгофа. Используем сначала второй. Знаки расставляем так: перед электродвижущей силой ставится минус, если она направлена против движения часовой стрелки (выбранное нами в предыдущем шаге направление), тогда для ЭДС направленного по часовой стрелке – ставим минус. Составляем для каждого контура с учетом знаков.

Для первого смотрим направление ЭДС, оно совпадает со штрих-пунтирной линией, ставим E1 плюс E2:

Формула для первого контура

Для второго:

Формула для второго контура

Для третьего:

Формула для третьего контура

Знаки у IR (напряжения) зависят от направлением контурных токов. Здесь правило знаков такое же, как и в предыдущем случае.

IR пишется с положительным знаком, если ток протекает в сторону направления обхода контура. А со знаком «–», если ток течет против направления обхода контура.

Направление обхода контура — это условная величина. Нужна она только для расстановки знаков в уравнениях, выбирается произвольно и на правильность расчётов не влияет. В отдельных случаях неудачно выбранное направление обхода может усложнить расчёт, но это не критично.

Рассмотрим еще одну цепь:

Цепь

Здесь целых четыре источника ЭДС, но порядок расчета тот же, сначала выбираем направление для составления уравнений.

Направления в цепи

Теперь нужно составить уравнения согласно первому закону Кирхгофа. Для первого узла (слева на схеме цифра 1):

Первый узел

I3 втекает, а I1, I4 вытекает, отсюда и знаки. Для второго:

Второй узел

Для третьего:

Третий узел

Вопрос: «Узла четыре, а уравнения всего три, почему?». Дело в том, что число уравнений первого правила Кирхгофа равно:

Nуравнений=nузлов-1

Т.е. уравнений всего на 1 меньше, чем узлов, т.к. этого достаточно, чтобы описать токи во всех ветвях, советую еще раз подняться к схеме и проверить, все ли токи записаны в уравнениях.

Теперь перейдем к построению уравнений по второму правилу. Для первого контура:

Уравнение для первого контура

Для второго контура:

Уравнение для второго контура

Для третьего контура:

Уравнение для третьего контура

Если подставить значения реальных напряжений и сопротивлений, тогда выяснится, что первый и второй законы справедливы и выполняются. Это простые примеры, на практике приходится решать гораздо более объёмные задачи.

ВыводГлавное при расчётах с помощью первого и второго законов Кирхгофа – соблюдения правила составления уравнений, т.е. учитывать направления протекания токов и обхода контура для правильной расстановки знаков для каждого элемента цепи.

Законы Кирхгофа для магнитной цепи

В электротехнике также важны и расчёты магнитных цепей, оба закона нашли своё применение и здесь. Суть остаётся той же, но вид и величины изменяются, давайте рассмотрим этот вопрос подробнее. Сначала нужно разобраться с понятиями.

Магнитодвижущая сила (МДС) определяется произведением количества витков катушки, на ток через неё:

F=w*I

Магнитное напряжение – это произведение напряженности магнитного поля на ток, через участок, измеряется в Амперах:

Um=H*I

Или магнитный поток через магнитное сопротивление:

Um=Ф*Rm

Магнитное сопротивление

L – средняя длина участка, μr и μ0 – относительная и абсолютная магнитная проницаемость.

Проводя аналогии запишем первый закон Кирхгофа для магнитной цепи:

Равенство для магнитной цепи

То есть сумма всех магнитных потоков через узел равна нулю. Вы заметили, что звучит почти так же, как и для электрической цепи?

Тогда второй закон Кирхгофа звучит, как «Сумма МДС в магнитном контуре равна сумме UM­­ ­­(магнитных напряжений).

Сумма МДС

Магнитный поток равен:

Расчет магнитного потока

Для переменного магнитного поля:

Переменное магнитное поле

Он зависит только от напряжения на обмотке, но не от параметров магнитной цепи.

В качестве примера рассмотрим такой контур:

Контур в сердечнике

Тогда для ABCD получится такая формула:

Расчет контура ABCD

Для контуров с воздушным зазором выполняются следующие соотношения:

Контуры воздушного зазора

Сопротивление магнитопровода:

Расчет сопротивления магнитопровода

А сопротивление воздушного зазора (справа на сердечнике):

Расчет сопротивления воздушного зазора

Где S — это площадь сердечника.

Чтобы полностью усвоить материал и наглядно просмотреть некоторые нюансы использования правил, рекомендуем ознакомиться с лекциями, которые предоставлены на видео:

Открытия Густава Кирхгофа внесли весомый вклад в развитие науки, в особенности электротехники. С их помощью довольно просто рассчитать любой электрический или магнитный контур, токи в нём и напряжения. Надеемся, теперь вам стали более понятны правила Кирхгофа для электрической и магнитной цепи.

Похожие материалы:

Опубликовано 26.02.2018 Обновлено 26.02.2018 Пользователем Александр (администратор)

(1 голосов)
Загрузка...
Обсудить на форуме

3 комментария

  • Darkness088

    Когда составляем ур-я по 1 закону Кирхгоффа, то есть хорошее пояснение по первому ур-ю. Почему нет пояснений по второму и третьему, когда там все намного неочевиднее? I2 там явно втекает, но почему-то знак у него положительный

    Ответить
  • Darkness088

    в третьем уравнении так вообще все три I втекают. Почему они положительные?

    Ответить
    • Александр (администратор)

      Обратите внимание, что в начале статьи уравнение рассмотрено в виде I1=I2+I3, если перенести всё в левую часть уравнения получится I1-I2-I3=0. Тоже самое и там сделано.
      Для второго узла:
      I1=I5+I2
      перенеся всё в одну сторону выйдет:
      I1-I5-I2=0

      Сопоставив с направлением обхода контура станет ясно, что лучше изменить знаки, то есть домножить на минус 1.
      Выйдет
      -I1+I5+I2=0
      что равносильно
      I2+I5-I1=0

      Ответить

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

sixty ÷ = twelve