- Статья
- Видео
Определение
Нагрузка электрической цепи определяет, какой ток через неё проходит. Если ток постоянный, то эквивалентом нагрузки в большинстве случаев можно определить резистор определённого сопротивления. Тогда мощность рассчитывают по одной из формул:
P=U*I
P=I2*R
P=U2/R
По этой же формуле определяется полная мощность в цепи переменного тока.
Нагрузку разделяют на два основных типа:
- Активную – это резистивная нагрузка, типа – ТЭНов, ламп накаливания и подобного.
- Реактивную – она бывает индуктивной (двигатели, катушки пускателей, соленоиды) и емкостной (конденсаторные установки и прочее).
Последняя бывает только при переменном токе, например, в цепи синусоидального тока, именно такой есть у вас в розетках. В чем разница между активной и реактивной энергией мы расскажем далее простым языком, чтобы информация стала понятной для начинающих электриков.
Смысл реактивной нагрузки
В электрической цепи с реактивной нагрузки фаза тока и фаза напряжения не совпадают во времени. В зависимости от характера подключенного оборудования напряжение либо опережает ток (в индуктивности), либо отстаёт от него (в ёмкости). Для описания вопросов используют векторные диаграммы. Здесь одинаковое направление вектора напряжения и тока указывает на совпадение фаз. А если вектора изображены под некоторым углом, то это и есть опережение или отставание фазы соответствующего вектора (напряжения или тока). Давайте рассмотрим каждый из них.
В индуктивности напряжение всегда опережает ток. «Расстояние» между фазами измеряется в градусах, что наглядно иллюстрируется на векторных диаграммах. Угол между векторами обозначается греческой буквой «Фи».
В идеализированной индуктивности угол сдвига фаз равен 90 градусов. Но в реальности это определяется полной нагрузкой в цепи, а в реальности не обходится без резистивной (активной) составляющей и паразитной (в этом случае) емкостной.
В ёмкости ситуация противоположна – ток опережает напряжение, потому что индуктивность заряжаясь потребляет большой ток, который уменьшается по мере заряда. Хотя чаще говорят, что напряжение отстаёт от тока.
Если сказать кратко и понятно, то эти сдвиги можно объяснить законами коммутации, согласно которым в ёмкости напряжение не может изменится мгновенно, а в индуктивности – ток.
Треугольник мощностей и косинус Фи
Если взять всю цепь, проанализировать её состав, фазы токов и напряжений, затем построить векторную диаграмму. После этого изобразить активную по горизонтальной оси, а реактивную – по вертикальной и соединить результирующим вектором концы этих векторов – получится треугольник мощностей.
Он выражает отношение активной и реактивной мощности, а вектор, соединяющий концы двух предыдущих векторов – будет выражать полную мощность. Всё это звучит слишком сухо и запутано, поэтому посмотрите на рисунок ниже:
Буквой P – обозначена активная мощность, Q – реактивная, S – полная.
Формула полной мощности имеет вид:
Самые внимательные читатели наверняка заметили подобие формулы теореме Пифагора.
Единицы измерения:
- P – Вт, кВт (Ватты);
- Q – ВАр, кВАр (Вольт-амперы реактивные);
- S – ВА (Вольт-амперы);
Расчёты
Для вычисления полной мощности используют формулу в комплексной форме. Например, для генератора расчет имеет вид:
А для потребителя:
Но применим знания на практике и разберемся как рассчитать потребляемую мощность. Как известно мы, обычные потребители, оплачиваем только за потребление активной составляющей электроэнергии:
P=S*cosФ
Здесь мы видим, новую величину cosФ. Это коэффициент мощности, где Ф – это угол между активной и полной составляющей из треугольника. Тогда:
cosФ=P/S
В свою очередь реактивная мощность рассчитывается по формуле:
Q = U*I*sinФ
Для закрепления информации, ознакомьтесь с видео лекцией:
Всё вышесказанное справедливо и для трёхфазной цепи, отличаться будут только формулы.
Ответы на популярные вопросы
Полная, активная и реактивная мощности являются важной темой в электричестве для любого электрика. В качестве заключения мы сделали подборку из 4 часто задаваемых вопросов на этот счёт.
- Какую работу выполняет реактивная мощность?
Ответ: полезной работы не выполняет, но нагрузкой на линии является полная мощность, в том числе с учетом реактивной составляющей. Поэтому чтобы снизить общую нагрузку с ней борются или говоря грамотным языком компенсируют.
- Как её компенсируют?
— В этих целях используют установки для компенсации реактива. Это могут быть конденсаторные установки или синхронные компенсаторы (синхронные электродвигатели). Подробнее мы рассматривали этот вопрос в статье: https://samelectrik.ru/kompensaciya-reaktivnoj-moshhnosti.html
- Из-за каких потребителей возникает реактив?
— Это в первую очередь электродвигатели – самый многочисленный вид электрооборудования на предприятиях.
- Чем вредит большое потребление реактивной энергии?
— Кроме нагрузки на линии электропередач следует учитывать, что предприятия оплачивает полную мощность, а физические лица – только активную. Это приводит к повышенной сумме оплаты за электроэнергию.
На видео предоставлено простое объяснение понятий реактивной, активной и полной мощностей:
На этом мы и заканчиваем рассмотрение данного вопроса. Надеемся, теперь вам стало понятно, что такое активная, реактивная и полная мощность, какие между ними отличия и как определяется каждая величина.
Материалы по теме:
Опубликовано 26.09.2018 Обновлено 28.06.2021 Пользователем Александр (администратор)
Доброго времени суток! Что такое индукция? Можно своими словами. Заранее благодарен.
Здравствуйте! Индукция — понятие достаточно широкое, если речь вести об электричестве, тогда она бывает электромагнитной, магнитной и электростатической.
Электромагнитной индукцией называется явление возникновения электрического тока или ЭДС в проводнике или контуре, на который воздействует переменное магнитное поле. При этом ЭДС прямопропорциональна скорости изменения потока. Кстати её открыл Майкл Фарадей 29 Августа 1831 года.
Магнитной индукцией называется сила, с которой действует магнитное поле на движущийся заряд.
Электростатической индукцией называется явление, вызванное перераспределением заряда внутри тел, в результате чего при воздействии на него внешним электрическим поле возникает собственное поле.